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Abstract: An efficient and versatile synthesis of piperazine-2-carboxamides 5 is described. The preparation 

consists of a one-pot, 4-component Ugi condensation between an N-alkylethylenediamine 1, chloroacetaldehyde 

(2), an isonitrile 3 and a carboxylic acid 4. © 1997 Elsevier Science Ltd. 

Piperazines and substituted piperazines are important pharmacophores that can be found in in many marketed 

drugs, such as the Merck H1V protease inhibitor Crixivan, 1 and drugs under development. 2 For this reason, the 

elaboration of substituted piperazines is an important field of study 3 and piperazine-2-carboxamides are 

especially attractive as assembly blocks in the synthesis of peptide mimetics. 4 Thus, direct approaches that allow 

the flexible assembly of these substrates by combining various components would be important, especially in 

view of the recent interest in multi-component condensations for the assembly of libraries of compounds. 5 This 

goal has been achieved using the 4-component Ugi condensation 6 as the key step in a one pot reaction between a 

mono-N-alkylethylenediamine 1, chloroacetaldehyde (2), an isocyanide 3 and a carboxylic acid 4 to give the 

substituted piperazines 5. 
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The reaction is operationally very easy to perform: an equimolar mixture of the the four components is stirred 

with 1 equivalent of NaHCO3 in MeOH for 48 hours and the resulting piperazine carboxamide 5 is obtained after 

a standard workup with EtOAc and a SiO2 flash chromatography. 7 It is equally possible to use the Na-salt of the 

acid instead of the acid and NaHCO3 combination. The reaction works well with a wide range of substituted 

mono-N-alkylethylenediamines I (Rl: Me, benzyl, isopropyl and 3-picoloyl), carboxylic acids 3 (R2: H, Me, Ph 

and PhCH 2) and isonitriles 4 (R3: tert-butyl, n-butyl, benzyl and cyclohexyl) and gives the variously substituted 

piperazines 5a-j in 34 to 66% isolated yield (Fable 1). 
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Table 1 

N-Alkylethylenediamine Carboxylic acid Isocyanide Piperazine-2- 

1 4 3 carboxamide 
R l  = RZ = R~ = 5 

Yield 

a CH2Ph a H a ten-butyl a 60% 

a CH2Ph a H b CH2Ph b 55% 

a CH2Ph a H e n-butyl c 66% 

a CH2Ph a H d cyclohexyl d 65% 

a CH2Ph b CH3 a tert-butyl e 47% 

a CH2Ph c CH2Ph a tert-butyl f 34% 

a CH2Ph d Ph a tert-butyl g 39% 

b Me a H a tert-butyl h 50% 

c isopropyl a H a tert-butyl i 44% 
d 3-picoloyl a H a tert-butyl j 67% 

The utility of the piperazine-2-carboxamides 5 would be enhanced if N1 and N4 could be selectively 

deprotected to allow for incorporation of the piperazine-2-carboxamide moiety into more complex systems. 

Indeed, this is readily accomplished for the formamide protected piperazines, such as 5j, under acidic conditions 

(MeOH, 2N HC1) leading to the free N1 amine 6 (94 % yield). 

5j 6 

Analogously, if N4 is benzyl as in 5e, hydrogenolysis (Pd(OH)2, EtOH, 3 atm H2) of the N4 benzyl group is 

readily accomplished to produce the N4 free amine 7 (67% isolated yield). 

Bn H 
N N 

5e 7 

From the work of the Ugi group it is known that chiral acids don't lead to useful diastereoselectivity at the 

newly formed chiral center in the normal 4-component Ugi condensation. This also holds in this reaction as 
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50:50 mixtures of the two diastereomers were obtained using the chiral acids 4e-h. The diastereomers of Sk-n 

were readily separable by flash chromatography (Table 2), thus allowing simple and facile access to these 

systems. 

Table 2 

N-Alkylethylenediamine Isocyanide Carboxylic acid Piperazine-2- 

1 3 4 carboxamide 
R l = R3 = R4COOH = 5 

Yield 

a CH2Ph a tert-butyl e (-)-2,3:4,6-Di-O-isopropylidene-2- k 13% +13% 

keto-gulonic acid 

a CH2Ph a ten-butyl f N-Cbz-L-Serine I 16% + 16% 

a CH2Ph a tert-butyl g (-) Camphanic acid m 15% + 15% 

a CH2Ph a tert-butyl h (R)-Mandelic acid n 25% + 25% 

In an extension of this methodology, it is also possible to form the 7-membcred 4-aza-azepin system 9 by 

using N-alkylpropylendiamines 8 instead of the the N-alkylethylenediamine 1, although the yield for the 

formation of the seven membered ring system is dramatically reduced 07%). 

Y 
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9 

The mechanism for the formation of 5 likely involves the addition of the isocyanide 3 and the acid 4 to the 

cyclic imine 10. The reaction pathway to 10 was probed by combining N-benzylethylenediamine ( la)  with 

chloroacetaldehyde (2) in CD3OD. Examination of the reaction mixture by 1H and 13C NMR indicates 

essentially instantaneous formation of the cyclic aminal 11. 8 Literature evidence 9 from analogous prolinol 

systems suggests that displacement of the halide by the tertiary amine with formation of the strained [3.1.0] 

system 12, and its subsequent rearrangement will lead to the cyclic imine 10. 
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In summary, a highly flexible and operationally simple method is at hand for the preparation of piperazine-2- 

carboxamides 5 in a one pot procedure from N-alkylethylenediamine 1, chloroacetaldehyde (2), isonitrile 4 and 

carboxyfic acid 3. 
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